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In this paper, we consider the dynamic behaviors of a mathematical chemostat
model with variable yield and periodically impulsive perturbation on the substrate.
The microbial growth rate is the Monod function µS

a+S and the variable yield coeffi-
cient δ(S) is quadratic (1 + cS2). Using Floquet theory and small amplitude perturba-
tion method, we establish the condition under which the boundary periodic solution is
globally asymptotically stable. Moreover, the permanence of the system is discussed in
detail. Finally, by means of numerical simulation, we demonstrate that with the increas-
ing of the pulsed substrate in the feed the system exhibits the complex dynamics.
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1. Introduction

The chemostat is a simple and well adopted laboratory apparatus used to
culture microorganisms. It can be used to investigate microbial growth and has
the advantage that the parameters are easily measurable. Sterile growth medium
enters the chemostat at a constant rate; the volume within the chemostat is
preserved by allowing excess medium to flow out through a siphon. Modeling
microbial growth is an important problem in mathematical biology and theo-
retical ecology. Smith and Waltman describe a chemostat and formulate various
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mathematical chemostat models [1]. A basic deterministic model of microbial
growth in the chemostat takes the following differential equations [2, 3].

S′(t) = D(S0 − S(t))− x(t)
δ

p(S(t)),

x ′(t) = x(t)(p(S(t))− D),
(1.1)

where S(t) and x(t) are concentrations of the substrate and the microorganism
in the chemostat, respectively; S0 is the concentration of the substrate in the feed
and D the dilution rate. The function p(S(t)) is the microbial growth rate. The
stoichiometric yield coefficient δ denotes the ratio of microorganism produced to
the mass of the substrate consumed.

When δ is constant and p(S(t))= µS(t)
a+S(t) in system (1.1), the dynamics of the

basic model (1.1) are simple: the microorganism x(t) can either become extinct
or persist at an equilibrium level [1]. In recent years, the microbial continuous
culture has been investigated by many scholars [4–7] and some interesting results
have been obtained. The fact that the yield coefficient depends on the substrate
concentration has been well analyzed in a series of theoretical studies in chemical
engineering literature [8–10]. Pilyugin and Waltman [11] studied multiple limit
cycles in the chemostat with variable yield. Zhu and Huang [12] analyzed relative
positions of limit cycles in the continuous culture vessel with variable yield. Now
many scholars pointed out that it was necessary and important to consider mod-
els with periodic perturbations, since these phenomena might be quite naturally
exposed in many real world (for instance, mating habits, harvesting). However,
there are some other perturbations such as fires, floods, and drainage of sewage
which are subject to instantaneous changes. These perturbations bring sudden
changes to the system. Systems with sudden changes are involving in impulsive
differential equations, which have been studied intensively and systematically in
[13, 14]. Impulsive differential equations are found in almost every domain of
applied sciences. Authors, in [15, 16], studied population dynamics using the the-
ory of impulsive differential equations and obtained some interest results. The
research on the chemostat model with periodically pulsed substrate is not too
much yet (See [17, 18] and references therein). However, this is an interest and
important problem in mathematical biology and laboratory experiment.

Using the method of [11], we have the dimensionless equations of (1.1) as
follows:

S′ = 1 − S − x p(S)
δ(S) ,

x ′ = x(p(S)− 1),

S(0) � 0, x(0) � 0,

(1.2)

where S and x are concentrations of the substrate and the microorganism in the
chemostat, respectively. The microbial growth rate p(S) = µS

a+S , the variable yield
coefficient δ(S) = 1 + cS2.
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In this paper, we investigate how the periodically pulsed substrate affects the
dynamic behaviors of the chemostat with variable yield. The chemostat model
takes the form as follows:

S′(t) = 1 − S(t)− x(t) p(S(t))
δ(S(t)) , t �= nT,

x ′(t) = x(t)(p(S(t))− 1), t �= nT,
�S = S(nT +)− S(nT ) = T S1, n = 1, 2, . . . ,
�x = x(nT +)− x(nT ) = 0, n = 1, 2, . . . ,
S(0+) � 0, x(0+) � 0,

(1.3)

where the first and second equations hold between pulses, the third and fourth
equations describe the actual pulsing. S(t), x(t) are the same as (1.2). T is the
period of the pulsing, T S1 the amount of the substrate concentration pulsed each
T . S1 units of substrate are added, on average, per unit of time. the variable yield
coefficient δ(S) is quadratic (1 + cS2), The function p(S) = µS

a+S is the microbial
growth rate.

2. Preliminary results

Let R+ = [0,+∞), R2+ = {X ∈ R2 : X � 0, X = (S, x)}, Ω = intR2+, N
be the set of nonnegative integers. Denote f = ( f1, f2)

T the map defined by the
right-hand of the anterior two equations of system (1.3).

Let V : R+ × R2+ → R+. Then V is said to belong to class V0 if

(i) V is continuous in (nT, (n + 1)T ] × R2+ and for each X ∈ R2+, n ∈ N ,
lim

(t,y)→(nT +,X)
V (t, y) = V (nT +, X) exists;

(ii) V is locally Lipschitzian in X .

Definition 2.1. Let V ∈ V0, (t, X) ∈ (nT, (n + 1)T ] × R2+. The upper right deriva-
tive of V (t, X) with respect to the impulsive differential system (1.3) is defined as

D+V (t, X) = lim sup
h→0+

1
h
[V (t + h, X + h f (t, X))− V (t, X)].

The solution of system (1.3) is a piecewise continuous function X (t) =
(S(t), x(t)) : R+ → R2+, X (t) is continuous on (nT, (n + 1)T ], n ∈ N and
X (nT +) = lim

t→nT + X (t) exists. Obviously, the global existence and uniqueness of

solutions of the system (1.3) is guaranteed by the smoothness properties of f
(see [13] for details). Hence, we have the following lemma.

Lemma 2.1. Suppose X (t) is a solution of (1.3) with X (0+) � 0. Then X (t) � 0
for all t � 0. Moreover, if X (0+) > 0, then X (t) > 0 for all t � 0.
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Definition 2.2. System (1.3) is said to be permanent if there exist constants
M � m> 0 such that m � S(t)� M,m � x(t)� M for t large enough, where
(S(t), x(t)) is any solution of (1.3) with S(0+) > 0, x(0+) > 0.

Lemma 2.2 (Comparison Theory, [13, Theorem 3.1.1]). Let V : R+ × R2+ → R+
and V ∈ V0. Assume that

D+V (t, X (t)) � g(t, V (t, X (t))), t �= nT,
V (t, X (t+)) � ψn(V (t, X (t))), t = nT,

(2.1)

where g : R+ × R+ → R is continuous in (nT, (n + 1)T ] × R+ and for each
z ∈ R+, n ∈ N , lim

(t,y)→(nT +,z)
g(t, y) = g(nT +, z) exist; ψn : R+ → R+ is nonde-

creasing. Let r(t) = r(t, 0, u0) be the maximal solution of the scalar impulsive
differential equation

u′ = g(t, u), t �= nT,
u(t+) = ψn(u(t)), t = nT,
u(0+) = u0,

(2.2)

existing on [0,∞). Then V (0+, X0) � u0 implies that V (t, X (t)) � r(t), t � 0,
where X (t) = X (t, 0, X0) is any solution of (1.3) existing on [0,∞).

Remark. In lemma 2.2, if the directions of the inequalities in (2.1) are reversed,
that is,

D+V (t, X (t)) � g(t, V (t, X (t))), t �= nT,
V (t, X (t+)) � ψn(V (t, X (t))), t = nT,

then V (t, X (t)) � ρ(t), t � t0, where ρ(t) is the minimal solution of (2.2) on
[0,∞).

The function we will use is in the form 1 − ω(t). For convenience, we give
some basic properties of the following system

ω
′
(t) = 1 − ω(t), t �= nT,

ω(t+) = ω(t)+ T S1, t = nT,

ω(0+) = S(0+) � 0.

(2.3)

Clearly, ω∗(t)=1+ T S1e−(t−nT )

1−e−T , t ∈ (nT, (n +1)T ], n ∈ N , (ω∗(0+)=1+ T S1
1−e−T )

is a positive periodic solution of (2.3). The solution of (2.3) is ω(t) = [ω(0+)−
ω∗(0+)]e−t + ω∗(t), t ∈ (nT, (n + 1)T ], n ∈ N . Therefore, the following result
holds.

Lemma 2.3. System (2.3) has a positive periodic solution ω∗(t) and |ω(t) −
ω∗(t)| → 0 as t → ∞ for any solution ω(t) of (2.3). Moreover, ω(t) � ω∗(t)
if ω(0+) � ω∗(0+) and ω(t) < ω∗(t) if ω(0+) < ω∗(0+).
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3. Extinction and permanence

Obviously, system (1.3) has a boundary T −periodic solution (S∗(t), 0)
representing the absence of microorganism, where (S∗(t), 0) = (1+ T S1e−(t−nT )

1−e−T , 0),
t ∈ (nT, (n + 1)T ].

Theorem 3.1. Periodic solution (S∗(t), 0) of system (1.3) is globally asymptoti-
cally stable if

∫ T
0 p(S∗(t))dt < T , i.e. µa ln (a+1)(1−e−T )+T S1

(a+1)(1−e−T )+T S1e−T < (a + 1 − µ)T .

Proof. The local asymptotic stability of boundary periodic solution (S∗(t), 0)
may be determined by considering the behavior of small amplitude perturba-
tion of the solution. Let (S(t), x(t)) be any solution of (1.3). We define S(t) =
u(t)+ S∗(t), x(t) = v(t).

The corresponding linear system of (1.3) at (S∗(t), 0) is

u′(t) = −u − p(S∗(t))
δ(S∗(t)) v, t �= nT,

v′(t) = [
p(S∗(t))− 1

]
v, t �= nT,

u(t+) = u(t), t = nT,
v(t+) = v(t), t = nT .

(3.1)

Let Φ(t) be a fundamental matrix of (3.1). Then Φ(t) satisfies

dΦ(t)
dt

=
(

−1 − p(S∗(t))
δ(S∗(t))

0 p(S∗(t))− 1

)

Φ(t) � A(t)Φ(t) (3.2)

and Φ(0) = I , the identity matrix.
The resetting impulsive conditions of (3.1) becomes

(
u(nT +)
v(nT +)

)

=
(

1 0
0 1

) (
u(nT )
v(nT )

)

.

The stability of the boundary T −periodic solution (S∗(t), 0) is determined
by the eigenvalues of the monodromy matrix

M =
(

1 0
0 1

)

Φ(T ) = Φ(T ).

From (3.2), we can obtain Φ(T ) = Φ(0) exp
(∫ T

0 A(t)dt
)

. Therefore, the
Floquet multipliers of system (3.1) are

µ1 = exp(−T ) < 1, µ2 = exp
(∫ T

0
[p(S∗(t))− 1]dt

)

.
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According to Floquet theory ([14, theorem 3.5]), the boundary T −periodic solu-
tion (S∗(t), 0) is asymptotically stable if |µ2| < 1, i.e. µa ln (a+1)(1−e−T )+T S1

(a+1)(1−e−T )+T S1e−T <

(a + 1 − µ)T .
In the sequel, we prove the global attractability of the boundary periodic

solution (S∗(t), 0). Note that S′(t) � 1 − S(t) and the comparison system (2.3).
We have S(t) � ω(t) and S(t) → ω∗(t) = S∗(t) as t → ∞ by lemmas 2.2 and 2.3.

From the condition of theorem 3.1, we can choose ε > 0 small enough such
that σ̄ = ∫ T

0 p(S∗(t)+ε)dt −T < 0 and S(t) � S∗(t)+ε for t large enough. With-
out loss of generality, we can assume S(t) � S∗(t)+ ε for all t � 0. From system
(1.3), we have

x ′(t) � x(t)[p(S∗(t)+ ε)− 1]. (3.3)

Integrating (3.3) on (nT, (n + 1)T ], we have

x((n + 1)T ) � x(nT +) exp

(∫ (n+1)T

nT
[p(S∗(t)+ ε)− 1]dt

)

= x(nT )eσ̄ .

Therefore, x(nT ) � x(0+) exp(nσ̄ ) and x(nT ) → 0 as n → ∞. Since 0 � x(t) �
x(nT ) exp(

∫ T
0 p(S∗(t) + ε)dt) � x(nT ) exp(T ) � x(0+) exp(nσ̄ + T ) for any t ∈

(nT, (n + 1)T ], we have x(t) → 0 as t → ∞. The proof is completed.

Theorem 3.2. There exists a constant M > 0 such that S(t) � M, x(t) � M for
each solution (S(t), x(t)) of (1.3) with all t large enough.

Proof. Suppose (S(t), x(t)) is any solution of (1.3) in Ω. Then S(t) satisfies the
inequality limsupS(t) � 1 + T S1. In particular, there exists T � 0 such that
S(t) � 2 + T S1 � S̄ for all t > T . Let q = max[0,S̄]δ(S) and V (t) = S(t)+ x(t)

q .
Then V ∈ V0 and

D+V (t) = 1 − S(t)+ ( 1
q − 1

δ(S) )p(S(t))x(t)− Dx(t)
q � 1 − V (t), t �= nT .

V (nT +) = V (nT )+ T S1, n = 1, 2, . . . .

Obviously, we can choose K > 0 such that

D+V (t) � −V (t)+ (K + 1), t �= nT,
V (nT +) = V (nT )+ T S1, n = 1, 2, . . . .

By Comparison Theory, we have

V (t) � (V (0+)− (K + 1))e−t + T S1(1 − e−nT )

1 − e−T
e−(t−nT ) + (K + 1),

t ∈ (nT, (n + 1)T ].
Therefore, V (t) is ultimately bounded by a constant and there exists a constant
M > 0 such that S(t) � M, x(t) � M for any solution (S(t), x(t)) of system (1.3)
with all t large enough. The proof is completed.
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Now we investigate the permanence of the system (1.3).

Theorem 3.3. System (1.3) is permanent if
∫ T

0 p(S∗(t))dt > T , i.e.

µa ln (a+1)(1−e−T )+T S1
(a+1)(1−e−T )+T S1e−T > (a + 1 − µ)T .

Proof. Suppose (S(t), x(t)) is any solution of (1.3) with(S(0+), x(0+)) > 0.
From theorem 3.2, we can assume S(t) � M, x(t) � M for t � 0. Choose ε1 > 0
small enough such that m1 = 1 + T S1

eT −1
− ε1 > 0 and σ0 = p(m1) − 1 < 0. It

follows from lemmas 2.2 and 2.3 that S(t) > m1 for all t large enough.
Next, we prove that there exists an m2 > 0 such that x(t) > m2 for all t

large enoughin two steps.

Step 1. Since
∫ T

0 p(S∗(t))dt > T , we can choose m3 > 0, ε2 > 0 small
enough such that σ = ∫ T

0 p(ȳ(t) − ε2)dt − T > 0, where ȳ(t) = a
a+µm3

+
T S1 exp{−(1+µm3

a )(t−nT )}
1−exp{−(1+µm3

a )T } , t ∈ (nT, (n + 1)T ]. We claim that x(t) < m3 cannot hold

for all t � 0, otherwise,

S′(t) � 1 −
(

1 + µm3

a

)
S(t).

By lemmas 2.2 and 2.3, we have S(t) � y(t) and y(t) → ȳ(t), t → ∞, where y(t)
is the solution of

y′(t) = 1 − (1 + µm3
a )y(t), t �= nT,

�y = y(t+)− y(t) = T S1, t = nT,
y(0+) = S(0+) > 0

(3.4)

and ȳ(t) is the positive periodic solution of (3.4).
Therefore, there exists a T1 > 0 such that S(t) � y(t) � ȳ(t)− ε2 and

x ′ � x[p(ȳ(t)− ε2)− 1] (3.5)

for t � T1.
Let N1 ∈ N and N1T � T1. Integrating (3.5) on (nT, (n + 1)T ], n � N1, we

have

x((n + 1)T ) � x(nT +) exp

{∫ (n+1)T

nT
p(ȳ(t)− ε2)dt − T

}

= x(nT )eσ .

Then x((N1 + k)T ) � x(N1T )ekσ → ∞ as k → ∞, which is a contradiction.
Hence, there exists a t1 > 0 such that x(t1) � m3.

Step 2. If x(t) � m3 for all t � t1, then our goal is obtained. Hence,
we need only to consider those solutions which leave the region Ω1 = {X ∈
R2+ : x(t) < m3} and enter it again. Let t∗ = inf{t � t1 : x(t) < m3}. Then
x(t) � m3 for t ∈ [t1, t∗) and x(t∗) = m3 since x(t) is continuous. Suppose
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Figure 1. Bifurcation diagrams system (1.3) with X0 = (0.58, 10): (a) the microorganism x(t) is
plotted for 500 values of S1 over [0.01, 1].

t∗ ∈ [n1T, (n1 + 1)T ), n1 ∈ N . Choose n2, n3 ∈ N such that n2T > T2 =
a

a+µm3
ln (M+T S1)(a+µm3)+a

ε2(a+µm3)
and e(n2+1)σ0T en3σ > 1.

Let T3 = n2T +n3T . We claim that there exists a t2 ∈ [(n1 +1)T, (n1 +1)T +
T3] such that x(t2) � m3. Otherwise, x(t) < m3, t ∈ [(n1 + 1)T, (n1 + 1)T + T3].
Consider (3.4) with y((n1 + 1)T +) = S((n1 + 1)T +), we have

y(t) =
[

y((n1 + 1)T +)−
(

a

a + µm3
+ T S1

1 − exp{−(1 + µm3
a )T }

)]

e−(1+µm3
a )(t−(n1+1)T ) + ȳ(t)

for t ∈ (nT, (n + 1)T ], n1 + 1 � n � n1 + 1 + n2 + n3.
Thus

|y(t)− ȳ(t)| <
[

M +
(

a

a + µm3
+ T S1

)]

exp
{
−

(
D + µm3

a

)
n2T

}
< ε2

and S(t) � y(t) � ȳ(t)−ε2, for t ∈ [(n1 +1+n2)T, (n1 +1)T + T3], which implies
(3.5) holds for t ∈ [(n1 + 1 + n2)T, (n1 + 1)T + T3].

Integrating (3.5) on [(n1 + 1 + n2)T, (n1 + 1)T + T3], we have

x((n1 + 1 + n2 + n3)T ) � x((n1 + 1 + n2)T )e
n3σ .

It follows from the second equation of (1.3) that

x ′(t) � x(t)[p(m1)− 1] = σ0x(t).
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Figure 2. Phase portraits of system (1.3) with X0 = (0.58, 10). The system is integrated 500 pulsing
cycles and the last 200 pulsing cycles are plotted: (a)S1 = 0, and (b) S1 = 0.01.

Integrating it on [t∗, (n1 + 1 + n2)T ], we have

x((n1 + 1 + n2)T ) � x(t∗)e(n2+1)σ0T = m3e(n2+1)σ0T .

Thus x((n1 + 1 + n2 + n3)T ) � m3en3σ eσ0(n2+1)T > m3, which is a contradiction.
Let t̄ = inf{t � t∗ : x(t) � m3}. Then x(t̄) � m3. For t ∈ [t∗, t̄), we have

x(t) � x(t∗)eσ0(t−t∗) � m3eσ0(1+n2+n3)T � m2. For t > t̄ , the same arguments can
be continued since x(t̄) � m3. Hence, we have x(t) � m2 for all t � t1. There-
fore, let m = min{m1,m2}, then for any solution (S(t), x(t)) of system (1.3) with
S(0+) > 0, x(0+) > 0 there exists an enough large T̃ > 0 such that m � S(t) �
M,m � x(t) � M for all t > T̃ . The proof is complete.
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Figure 3. The time series for the last 50 pulsing cycles with S1 = 0.31: (a) time series of the sub-
strate S(t) with X0 = (0.58, 10), and (b) time series of the microorganism x(t) with X0 = (0.58, 10).

4. Numerical simulation

In this section, we will demonstrate our main results by means of numerical
simulation. Let µ = 2.0, a = 0.58, T = 2, c = 50, S(0+) = 0.58, x(0+) = 10. Then
dynamic behavior of system (1.3) is determined completely by the amount of the
pulsed substrate in the feed. If S1 = 0, then the system (1.3) is a continuous
system (1.2), we have known system (1.2) has limit cycles [11] (figure 2(a)). We
will study the influences of S1 on this inherent oscillation by means of numerical
simulation. System (1.3) is integrated numerically for 500 pulsing cycles at each
value of S1. We plotted the last 300 stroboscopic measurements of the microor-
ganism x(t). The resulting bifurcation diagrams (figure 1) clearly show that with
S1 increasing over [0.01, 1] system (1.3) experiences complex dynamic process of
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Figure 4. Phase portraits of system (1.3) (a) chaotic attractor of system (1.3) with S1 = 0.31, and
(b) T −Periodic solution of system (1.3) with S1 = 0.7.

quasi-periodic oscillating → cycles → periodic doubling cascade → chaos →
periodic halfing cascade → cycles.

When S1 = 0.01 is sufficiently small, the periodic impulsive perturbation
cannot destroy the inherent oscillation of the continuous system, the solutions of
system (1.3) will ultimately oscillate around the limit cycle (figure 2(b)). But, with
the increasing of S1, the system (1.3) exhibits complex dynamic behavior. When
S1 = 0.31, the substrate S(t) and the microorganism x(t) exhibit anomalous
sustained oscillation (figure 3) and a typical chaotic attractor is captured (figure
4(a)). When S1 = 0.7, the substrate S(t) and the microorganism x(t) exhibit peri-
odic sustained oscillation and coexist in the chemostat (figure 4(b)).

In conclusion, the fact that the microorganism cultures with variable yields
exhibit sustained oscillations has an important implication for coexistence. In a
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sense, our results may provide a theoretical policy for the microorganism cultures
in experiment.
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